Brief report

Subjective pleasure experience in patients with recent-onset schizophrenia: A preliminary report

Neuropsychology and Applied Cognitive Neuroscience Laboratory, Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China

University of Chinese Academy of Sciences, Beijing, China

Castle Peak Hospital, Hong Kong Special Administration Region, China

Department of Psychology, University of Berkeley, CA, USA

1. Introduction

Anhedonia refers to the diminished ability to experience pleasure, and constitutes one of the negative symptoms of schizophrenia (Kirkpatrick et al., 2006). Hedonic capacity has been conceptualised as a construct comprising the “anticipatory” component (wanting) and the “consummatory” component (liking) (Berridge, 2003, 2007; Kring and Barch, 2014). People with schizophrenia commonly report difficulties in experiencing pleasure in everyday life (Horan et al., 2008), but have intact affective experiences in response to emotionally evocative stimuli (Cohen and Minor, 2010; Llerena et al., 2012). The evidence appears to support a dissociation of anticipatory and consummatory pleasure experience in people with schizophrenia. Compared to consummatory pleasure, anticipatory pleasure has been proposed to be more closely related to motivated behaviour (Barch and Dowd, 2010; Kring and Barch, 2014). The Temporal Experiences of Pleasure Scale (TEPS; Gard et al., 2006, 2007) was developed to tap into the anticipatory–consummatory differentiation of anhedonia.

Using the TEPS, Gard et al. (2007) found that people with chronic schizophrenia anticipated less pleasure from everyday activities, whereas Strauss et al. (2011) found that people with chronic schizophrenia reported experiencing less consummatory pleasure. In another study, Chan et al. (2010) administered the TEPS on people with chronic schizophrenia and found that people with prominent negative symptoms anticipated less pleasure than those without, but the two groups did not differ in consummatory pleasure. To date, only three studies (Cassidy et al., 2012; Schlosser et al., 2014; Mote et al., 2014) have recruited people with recent-onset (duration of illness <5 years) schizophrenia and the findings reported have been inconsistent. Using the TEPS, Schlosser et al. (2014) and Cassidy et al. (2012) found that people with recent-onset schizophrenia self-reported similar anticipatory and consummatory pleasure as controls. However, Mote et al. (2014) reported that people with early schizophrenia-spectrum disorders anticipated less pleasure than controls, but had intact consummatory pleasure.

The inconsistent findings may be related to several methodological limitations, i.e., the group difference in age (Schlosser et al., 2014; Mote et al., 2014) and the confounding effect of active cannabis misuse (Cassidy et al., 2012). In this study, we re-examined the important issue of anticipatory and consummatory pleasure in recent-onset schizophrenia, using samples that were better matched in demographics and having no past history of illicit substance misuse. Gooding and Pflum (2012) have begun to examine the relationship between the ability to experience anticipatory and consummatory pleasure, and working memory, in individuals reporting higher level of social anhedonia. However,
there is a paucity of evidence for people with schizophrenia in this interesting area. We also examined the relationship between neurocognitive functions, and anticipatory and consummatory pleasure, in people with recent-onset schizophrenia. We hypothesised that (1) people with schizophrenia have difficulties in experiencing pleasure, and that these deficits would be apparent in the anticipatory rather than the consummatory domains of pleasure experience; and (2) working memory, rather than other neurocognitive functions, is correlated with the ability to experience anticipatory pleasure but not consummatory pleasure.

2. Methods

2.1. Participants

We recruited 27 clinically stable outpatients with a DSM-IV diagnosis of schizophrenia from an early psychosis intervention programme in Hong Kong. Diagnoses were based on structured interviews (First et al., 1995), supplemented by information from medical records. Exclusion criteria were (1) a life-time history of substance abuse, (2) a history of electroconvulsive therapy in the past six months, (3) neurological disorder, (4) a history of head injury with loss of consciousness for more than 30 min, and (5) mental retardation. We also recruited 26 healthy individuals from nursing schools and community youth centres as controls. Interviews by a qualified psychiatrist ascertained that no controls had any lifetime or family history of psychosis. All participants were Chinese in ethnicity. Demographics, treatment histories, and antipsychotic medications in terms of chlorpromazine equivalent (Gardiner et al., 2010) were ascertained from case records. All the participants were Chinese in ethnicity. Demo-

2.2. Measures and procedure

Participants completed the Temporal Experience of Pleasure Scale (TEPS) (Gard et al., 2006, 2007). The Chinese version of the TEPS (Chan et al., 2012) modified the original 18-item questionnaire, and used nine items to generate the anticipatory pleasure subscale score, and 10 items to generate the consummatory pleasure subscale score. Chan et al. (2012) found a four-factor rather than two-factor solution for the TEPS (contextual anticipatory, abstract anticipatory, contextual consummatory, abstract consummatory), based on a non-clinical Chinese sample comprising 1119 students. The Chinese version of the TEPS was demonstrated to have satisfactory validity and reliability, internal consistency in factor structure and discriminant ability in the Chinese population (Chan et al., 2010, 2012).

The Positive and Negative Syndrome Scale (PANSS; Kay et al., 1987) was administered by trained psychiatrists. We estimated intelligence using a procrating method based on the arithmetic, similarity and digit span subscales of the Chinese version of the Wechsler Adult Intelligence Scale-Revised (WAIS-R) (Gong, 1992). Participants also completed a battery of neurocognitive tests. For the Logical Memory (LM) and Visual Reproduction (VR) subtests of the Chinese version of the Wechsler Memory Scale-Revised (Gong et al., 1989), we read out a story and presented two figures, one at a time, to the participants, and the participants were required to recall the materials immediately and after 30 min. In the Letter-Number Span Test (LNT; Gold et al., 1997), a series of alternating numbers and letters were read to the participants, and they were asked to rearrange the letters and numbers in successive order. We recorded the LNT accuracy and LNT category passed. The one-minute semantic (animal) Verbal Fluency Test (VF; Henry and Crawford, 2004) was used to assess initiation ability. In the VF Test, participants were asked to generate as many items (belonging to the animal category) as they could in a one-minute period. The modified version of the Wisconsin Card Sorting test (WCST; Nelson, 1976) was used to assess cognitive flexibility and task switching. We recorded the WCST perseverative error and the WCST category passed. The local ethics committee approved all study procedures.

2.2.1. Data analysis

To examine group difference in the ability to experience anticipatory and consummatory pleasure, the four TEPS subscale scores (abstract anticipatory, contextual anticipatory, abstract consummatory, contextual consummatory) between the groups were compared by a series of univariate ANOVAs. Because of the trend of significance that the schizophrenia group consisted of more males than the control group, we conducted follow-up ANCOVAs, with gender as a covariate. To examine the contribution of neurocognitive functions to anticipatory and consummatory pleasure in the schizophrenia group (n = 27), we entered the independent variable (estimated IQ), immediate and delayed LM, immediate and delayed VR, LNT accuracy, LNT category passed, VF, WCST perseverative error, WCST category passed) into “force-entry” linear regression models, with either the TEPS abstract anticipatory, the TEPS contextual anticipatory, the TEPS abstract consummatory, or the TEPS contextual consummatory subscale score as the dependent variable. Finally, we report the psychometric properties of the TEPS in healthy sample and in people with schizophrenia in terms of Cronbach’s alpha, split-half

Table 1

<table>
<thead>
<tr>
<th>Characteristics of participants.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Healthy controls (n=26)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Recent-onset schizophrenia (n=27)</td>
</tr>
<tr>
<td>Mean</td>
</tr>
<tr>
<td>Age</td>
</tr>
<tr>
<td>Gender</td>
</tr>
<tr>
<td>Handness</td>
</tr>
<tr>
<td>Estimated IQ</td>
</tr>
<tr>
<td>Immediate logical memory</td>
</tr>
<tr>
<td>Delayed logical memory</td>
</tr>
<tr>
<td>Immediate visual reproduction</td>
</tr>
<tr>
<td>Delayed visual reproduction</td>
</tr>
<tr>
<td>LNT correct response</td>
</tr>
<tr>
<td>LNT category passed</td>
</tr>
<tr>
<td>WCST perseverative error</td>
</tr>
<tr>
<td>WCST category passed</td>
</tr>
<tr>
<td>Verbal fluency</td>
</tr>
<tr>
<td>TEPS abstract anticipatory</td>
</tr>
<tr>
<td>TEPS contextual anticipatory</td>
</tr>
<tr>
<td>TEPS abstract consummatory</td>
</tr>
<tr>
<td>TEPS contextual consummatory</td>
</tr>
<tr>
<td>PANSS positive subscale</td>
</tr>
<tr>
<td>PANSS negative subscale</td>
</tr>
<tr>
<td>PANSS neutral subscale</td>
</tr>
<tr>
<td>Duration of illness (years)</td>
</tr>
<tr>
<td>Medications (chlorpromazine equiv)</td>
</tr>
</tbody>
</table>

p < 0.05 are bold.

Note: IQ = intelligence; LNT = Letter-number span test; WCST = the Wisconsin Card Sorting test; TEPS = the Temporal Experience of Pleasure Scale; PANSS = the Positive and Negative Syndrome Scale, p = p-value.

* = χ² test
3. Results

As shown in Table 1, ANOVAs showed that people with schizophrenia self-reported less pleasure on the TEPS abstract anticipatory subscale ($F[1,151]=4.117, p=0.032$, Cohen's $d=-0.563$) and the TEPS contextual anticipatory subscale ($F[1,151]=4.204, p=0.045$, Cohen's $d=-0.718$) than controls, but not the TEPS abstract consummatory subscale ($F[1,151]=0.694, p=0.158$, Cohen's $d=-0.394$) or the TEPS contextual consummatory subscale ($F[1,151]=0.694, p=0.158$, Cohen's $d=-0.394$). After Bonferroni adjustments, only the group difference on the TEPS abstract anticipatory subscale remained statistically significant.

ANCOVAs showed that, after accounting for gender ratio in the two groups, people with schizophrenia self-reported less pleasure on the TEPS abstract anticipatory subscale ($F[1,50]=3.251, p=0.077$) and the TEPS contextual anticipatory subscale ($F[1,50]=4.472, p=0.039$) than controls. After Bonferroni adjustments, only the group difference on the TEPS contextual anticipatory subscale showed a trend of significance.

For the TEPS abstract anticipatory subscale score, the forced-entry linear regression model showed that all the neurocognitive functions together explained 40.0% of the variance ($F[10,16]=1.066, p=0.438$) in the schizophrenia group ($n=27$). Among the neurocognitive functions entered into the regression model, only VF showed a trend of significance as a predictor of the TEPS abstract anticipatory subscale score (standardised Beta = 0.482, $p=0.097$). For the TEPS contextual anticipatory subscale score, the regression model with all neurocognitive functions entered as independent variables explained 31.1% of the variance ($F[10,16]=1.066, p=0.693$); only VF showed a trend of significance as a predictor in this model (standardised Beta = 1.920, $p=0.073$). For the TEPS abstract consummatory subscale score, the regression model explained 24.4% of the variance, and none of the neurocognitive functions reached statistical significance in the model ($p > 0.1$). Similarly for the TEPS contextual consummatory subscale score, the regression model only explained 24.4% of the variance, and none of the neurocognitive functions reached statistical significance in the model ($p > 0.1$).

In the sample with schizophrenia ($n=27$), we found a high reliability of the TEPS, because of a Cronbach's alpha of 0.881, a split-half reliability (Spearman–Brown coefficient) of 0.787, and an intra-class coefficient (average measures) of 0.881.

In the healthy sample ($n=26$), we found a Cronbach's alpha of 0.796, a split-half reliability (Spearman–Brown coefficient) of 0.810, and an intra-class coefficient (average measures) of 0.796.

4. Discussion

This study is one of only a few studies that examines self-reported anticipatory and consummatory pleasure in recent-onset schizophrenia; it is the only study to do so in China. Compared to previous studies (Cassidy et al., 2012; Schlosser et al., 2014; Mote et al., 2014), there was better matching of age and gender between the groups, and none of the participants misused substance. Moreover, we have also examined the relationship between self-reported anticipatory and consummatory anhedonia and neurocognitive functions.

Consistent with Mote et al. (2014)'s study, our findings appear to suggest that people with recent-onset schizophrenia exhibit anticipatory deficits. Apparently, our findings do not support Cassidy et al. (2012) and Schlosser et al.'s (2014) previous findings of consummatory pleasure deficits in people with schizophrenia. Moreover, our preliminary findings appear to show that neurocognitive dysfunctions may contribute to anticipatory pleasure deficits in people with schizophrenia. However, further study using a larger scale is needed to validate our current findings. Contrary to our expectation, verbal fluency (a proxy of initiation ability) but not working memory appeared to be a predictor of the ability to anticipate pleasure in people with recent-onset schizophrenia. This is a novel finding. It is plausible that “initiation” is a proxy measure of one’s volition, and it is noteworthy that avolition and anhedonia are both negative symptoms (Barch and Dowd, 2010). In the development of the Clinical Assessment of Interview for Negative Symptoms (CAINS), Blanchard et al. (2011) argued that the lack of pleasure reported by people with schizophrenia is actually a multi-faceted phenomenon, influenced by numerous environmental factors relatively independent from the illness per se. In reality, the likelihood for an individual to experience pleasure in everyday life closely depends on the availability of potentially pleasurable activities. It is plausible that those having defective initiation ability are more likely to deprive themselves of such opportunities, and therefore self-report fewer pleasurable experiences. Unlike laboratory paradigms, self-report instruments like the TEPS are unable to control for environmental confounds, e.g., an individual given limited opportunity to encounter pleasurable events in everyday life tends to have low ratings in the TEPS.

This study had several limitations. First, the sample size was small, and several findings were trends of significance. Secondly, we employed multiple comparisons, and alpha inflation errors should be borne in mind. Replication of our preliminary findings in a larger sample is clearly indicated. Thirdly, we only administered the TEPS to measure the dissociation of anticipatory and consummatory pleasure experience, but did not cover other types of pleasure (e.g. social pleasure versus non-social pleasure, remembered versus directly experienced pleasure). The inclusion of additional self-report instruments, such as the ACIPS (Gooding and Pflum, 2014; Bedwell et al., 2014), is recommended for future studies. Lastly, other behavioural studies (Heerey and Gold, 2007) have demonstrated anticipatory pleasure deficits, using well-controlled laboratory-based paradigms. However, the relationship between anticipatory and consummatory pleasure, and neurocognitive functions in everyday life settings may differ from that in a well-controlled laboratory-based settings.

Acknowledgements

This study was supported by grants of the Strategic Priority Research Program (B) of the Chinese Academy of Science (XDB02030002), the National Science Fund China (81088001 and 91132701), the Key Laboratory of Mental Health, and the Knowledge Innovation Project of the Chinese Academy of Sciences (KSCX2-EW-J-8). These funding agents had no role in the study design; collection, analysis, and interpretation of the data; writing of the manuscript; or decision to submit the paper for publication.

Appendix A. Supporting information

Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.psychres.2015.04.013.

References

