Midterm Exam Feedback

- Initial Scoring: $M = 32.26$ ($SD = 9.37$)
- No “Bad” Items
- Two Items “iffy”: #s 9, 10
 - M Score > 1 SD Below Mean
 - Rescored Full Credit for All Students
 - Rescore: $M = 37.12$, $SD = 7.80$
- Adjust Average Score: Add 5 Points
 - Final Score: $M = 41.84$, $SD = 7.45$

Distribution of Midterm Exam Scores
Fall 2014

- Mean: 41.84 ($SD = 7.45$)
- Median: 44
Defining Altered States of Consciousness by Converging Operations

Stoyva & Kamiya (1966) after Garner, Hake, & Eriksen (1956); Campbell & Fiske (1959)

Clinical Disruptions of Consciousness

• Concussion
 – Temporary Disturbance of Consciousness
 – Results from Closed-Head Injury
• Coma
 – Chronic Loss of Consciousness
 – Failure to Arouse to Vigorous/Painful Stimuli
• Stupor
 – Chronic Loss of Consciousness
 – Responds to Vigorous/Painful Stimulation

“The Ding”
Yarnell & Lynch (1973)

• College Football Players (18 Games)
 – Mild Concussion vs. Broken Limbs
 – Memory Tests
 • Recall Examination on Field
 • Recall Impact, Play in Progress
• No Loss of Consciousness
 – Immediate Disorientation
 – Loss of Memory Within Minutes
 • Sometimes Lucid Interval Before Amnesia
Coma
Jennett & Plum (1972)

- Loss of Consciousness
 - No Communication
 - No Response to Stimulation
 - Auditory
 - Visual
 - Somatosensory Reflexes
 - No Signs of Emotion
- Vegetative Function OK
- Eyes Closed
 - But No Sleep Cycles

Glasgow Coma Scale
Teasdale & Jennett (1974)

<table>
<thead>
<tr>
<th>Best Eye Response</th>
<th>Best Verbal Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - No eye opening</td>
<td>1 - No verbal response</td>
</tr>
<tr>
<td>2 - Eye opening to pain</td>
<td>2 - Incomprehensible sounds</td>
</tr>
<tr>
<td>3 - Eye opening to verbal command</td>
<td>3 - Inappropriate words</td>
</tr>
<tr>
<td>4 - Eyes open spontaneously</td>
<td>4 - Confused</td>
</tr>
</tbody>
</table>

Best Motor Response

1 - No motor response	2 - Extension to pain
3 - Flexion to pain	4 - Withdrawal from pain
5 - Localising Pain	6 - Obeys commands

Range of Scores: 3 - 15

- < 8, Severe
- 9-12, Moderate
- >12, Mild

Vegetative State
Jennett & Plum (1972)

- Follows Coma (usually within 1 month)
- Wakefulness without Consciousness
 - No Communication
 - Partial Response to Stimulation
 - Auditory, Visual Startle
 - Sometimes Brief Orientation
 - Withdrawal to Noxious Somatosensory Stimulus
 - Few Signs of Emotion
 - Sometimes Reflexive Crying, Smiling
- Eyes Open
 - Sleep Cycles
Incidence of PVS in Severe Head Injury
Braakman et al. (1988)

<table>
<thead>
<tr>
<th>Time Since Injury (Months)</th>
<th>% in PVS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>12</td>
<td>8</td>
</tr>
</tbody>
</table>

US Prevalence: 16,250,000 (1994)

Anatomy of Coma and Vegetative State

- **Coma**: Posterior Brain Stem
 - Reticular Formation
 - Periaqueductal Gray
 - Parabrachial Nucleus
- **PVS**: Diencephalon
 - Thalamus
 - RF Intact
 - Continues to Generate the Sleep-Wake Cycle

Reticular Activating System Rediscovered?

- Moruzzi & Magoun (1949)
 - Lesions, Stimulation in Cats
 - Anterior Lesions – Hypersomnia
 - Posterior Lesions - Insomnia
 - "Desynchronized" EEG
 - Sign of Cortical Activation
- RAS Extends into Thalamus
A “Proto-Self”?

- Two Types of Self-Consciousness
 - Core Self
 - On-line Conscious Awareness
 - Distinguishes Self from Nonself
 - Autobiographical Self
 - Narrative Personal History
- Unconscious Proto-Self
 - Associated with RF
 - Monitors Physical Condition of the Organism
 - Anything More than Homeostatic Regulation?

Locked-In Syndrome

- Full Consciousness
 - Anarthria, Aphonia
 - Loss of Articulate Speech, Vocalization
 - Quadriplegia
 - Paralysis of Limbs
 - Preserved Auditory, Visual Function
 - Startle, Orienting
 - Localization, Fixation, Pursuit
 - Preserved Communication
 - Blinking, Vertical Eye Movements
 - Preserved Emotion

“Locked-In” Syndrome

- Follows Coma
- Largely Immobile
- Limited Responsiveness
 - Vertical Eye Movements
 - Blinking
- Anterior Brain Stem
 - Pons
 - Excludes Reticular Formation
How Do You Get “Locked In”?
- Most Motor Pathways Pass Through Anterior Brainstem
- Damage At or Below Trigeminal Nerve (V)
- Spares
 - Afferent Nerves
 - Olfactory Nerve (I)
 - Optic Nerve (II)
 - Efferent Nerves
 - Oculomotor Nerve (III)
 - Trochlear Nerve (IV)

Management and Rehabilitation of the Persistent Vegetative State
- “Persistent” Can Become “Permanent”
 - Should the Qualifiers be Dropped?
- Recovery vs. “Post-Vegetative State”
 - Differentiated Response to Environment
 - Internal (Bowel, Bladder discomfort)
 - External (Pain)
- Physical Therapy
- Electrical Stimulation of Brainstem
- Cognitive Stimulation

Recovery from Coma, PVS
West County Times, 04/07/03
- Tustin, Ca. Woman
- In “Coma” for 1 year
 - 1 Day After Giving Birth
 - 10 Minutes After Brain-Tumor Surgery
- Recovery after 1 Year
 - Turned Toward Mother, “Smiled”
 - Can Now Lift Arms, Hold Child
 - Cannot Walk, Talk, or Smile
 - Communicates by Rolling Eyes
Recovery from the Persistent Vegetative State

Levin et al. (1991)

<table>
<thead>
<tr>
<th>Duration of PVS</th>
<th>% Recovering</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 6 Months</td>
<td>45</td>
</tr>
<tr>
<td>< 1 Year</td>
<td>35</td>
</tr>
<tr>
<td>< 3 Years</td>
<td>19</td>
</tr>
</tbody>
</table>

Terri Schiavo (1963-2005)

- 1990
 - Respiratory/Cardiac Arrest
- 1998
 - Husband Petition to Remove Tube
 - Parents Appealed
 - State, Federal Involvement
- 2002 CT Scan
- 2005 Autopsy

Minimally Conscious State

Giacino et al. (2002)

- Partial, Inconsistent Consciousness
 - Communication Inconsistent but Intelligible
 - Contingent Vocalization
 - Spontaneous Verbalization, Gesture
 - Partial Response to Stimulation
 - Auditory Localization
 - Inconsistent Command Following
 - Sustained Visual Fixation
 - Inconsistent Sustained Pursuit
 - Localizes Noxious Stimuli
 - Automatic Movements
 - Reaches for Objects, Accommodates to Shape
 - Contingent Smiling, Crying
Brain Activity in Minimally Conscious State
Schiff et al. (2005)

- 2 Patients in MCS
 - 1 with Damage to Left Temporal Lobe
- Passive Stimulation
 - Light Touch of Hands
 - Auditory Narratives of Familiar Events
 - Familiar Voice
 - Auditory Passages Without Semantic Content
 - Reversed Speech

Response to Somatosensory Stimulation
Schiff et al. (2005)

- Primary Somatosensory Area
 - “Anatomic Hand Area”

Response to Verbal Stimulation
Schiff et al. (2005)

- Activation of Language Centers
 - Recognition of Speech
 - Discrimination of Nonspeech
- Speech vs. Nonspeech
 - Pt. 1, Damaged Wernicke’s area
 - Pt. #2, “Reduced Engagement”
Brain Activity to Speech Stimulation
Schiff et al. (2005)

ERP Responses to Patients’ Own Names
Perrin et al. (2006)

- “Cognitive” Event-Related Potentials
 - N1, P2, N2
 - P3: Orienting Response to Unexpected Stimulus
- Own First Name vs. Other First Name
- Patients
 - Persistent Vegetative State
 - Minimally Conscious State
 - Locked-In Syndrome
 - Age-Matched Controls

ERP Amplitudes
Perrin et al. (2006)
Evidence of Semantic Processing

Perrin et al. (2006)

% P3 in ERP

Conclusions and Implications

Perrin et al. (2006)

• Ambiguity of P3
 – Does Not Necessarily Entail Conscious Perception
 • Also Occurs in Subliminal Stimulation
 – “Automatic” component of Speech Comprehension?

What Counts as Evidence of Consciousness?

Coma
General Anesthesia

Conscious Activity in the Vegetative State

Owen et al. (2006)

• 23 y/o Woman
 – TBI after Auto Accident
• Dx of Vegetative State
 – 5 Months Unresponsive
 – Preserved Sleep Cycle
• fMRI
 – Speech vs. Noise
 • Ambiguous Words
 – Creak, Beam, Ceiling
 – Imagery Instructions
Voluntary Brain Activity in the Persistent Vegetative State
Monti et al. (2010)

• 54 Patients: PVS = 23; MCS = 31
 – 16 Healthy Controls
• Motor and Spatial Imagery Tasks
 – Hitting a Ball on a Tennis Court
 – Walking Familiar Street or House
• fMRI of Regions of Interest
 – Motor: Supplemental Motor Area
 – Spatial: Parahippocampal Gyrus

fMRI Response to Imagery Tasks
Monti et al. (2010)

Motor Spatial Motor Spatial

5/54 Patients:
4 PVS (17%)
1 MCS (3%)
Useful for Communication?

- Asked Factual Yes-No Questions
 - “Do You Have Any Brothers?”
- Motor/Spatial for Yes/No
 - (Counterbalanced)
- Interrogator Blind to Correct Answers

Time Course of Activation
Monti et al. (2010)

1 of 5 out of 54 Patients with PVS or MCS

Differential Response to Command
Cruse et al. (2011, 2012); Owen (2013)

- Patients in PVS, MCS
- Respond to Signal
 - Squeeze Right Hand
 - Wiggle Left Toe
- Classify EEG Activity in Premotor Cortex
 - 9/12 Normal Controls (75%)
 - 3/16 PVS (19%)
 - 5/23 MCS (22%)
Differential Response to Command
Cruse et al. (2011, 2012); Owen (2013)

• Patient in PVS for 5 Years
• Imagination Tasks
 – Playing Tennis
 – Moving Around House
• 5 Yes/No Questions Answered Correctly

Imagining for Communication
Monti et al. (2010); Owen (2013)

• Patient in PVS for 5 Years
• Imagination Tasks
 – Playing Tennis
 – Moving Around House
• 5 Yes/No Questions Answered Correctly
Conclusions About PVS and MCS

- Some Evidence of Intentional Activity
 - Specific Response to Instructions
- But Only in Small Minority of Patients
- Doubt Clinical Criteria for MCS
 - PVS > MCS
- Use Technique for Diagnosis
- Use Technique for Communication
 - Medical Decisions
 - Confirm Advance Directives
 - Life Support, Limited Treatment

General Anesthesia as “Controlled Coma”

- Sedation
- Loss of Consciousness
 - Analgesia
 - Amnesia
- Immobility
 - Lack of Voluntary Motor Behavior
 - Anesthetic Agents
 - Reflexive Response
 - Muscle Relaxants

Pain Relief in Pre-19th-Century Surgery

- Tolerate
- Alcohol
- Opiates (Laudanum)
- Bite Board
- Physical Restraint
Ether Day
First Demonstration of Ether as an Anesthetic Agent
William Morton, October 16, 1846

Surgeon: J.C. Warren
Anesthetist: W.T.G. Morton
Patient: Gilbert Abbot
Massachusetts General Hospital

Sedation
Muscle Relaxation

Anxiety
Lack of Response

Balanced Anesthesia

Anesthesia
Awareness

Analgesia
Pain

Pre-Anesthetic Procedure

• Pre-Operative Visit
 – Exchange Information
 – Informed Consent

• Sedative Premedication
 • Benzodiazepine
 – Diazepam, Midazolam
 • Barbiturate
 – Thiopental
 • Propofol
 – Relieve Preoperative Anxiety
 – Facilitate Induction of Anesthesia
Inducing Anesthesia

- Rapid Sequence Induction
 - Short-Acting Barbiturate, Propofol
 - Intravenous
- Inhalation (Mask) Induction
 - Nitrous Oxide in Oxygen
- Muscle Relaxant

Maintaining Anesthesia

- Connection to Ventilator
 - Artificial Respiration
- Maintenance of General Anesthesia
 - Nitrous Oxide and Oxygen
 - Volatile Agent
 - Isoflurane
- Intravenous Narcotics
 - Sufentanil, Propofol

Reversing Anesthesia

- Reverse Muscle Relaxation
 - Anticholinesterase Agent
 - Neostigmine
- Restore Normal Breathing
- Intravenous Narcotic Analgesic
 - Morphine
 - Post-Operative Pain
General Anesthesia as “Controlled Coma”

- Sedation
- Loss of Consciousness
 - Analgesia
 - Amnesia
- Immobility
 - Lack of Voluntary Motor Behavior
 - Reflexive Response
 - Muscle Relaxants

Two Continua of Consciousness

After Laureys (2005)

Awareness

Conscious Wakefulness

Drowsiness

REM Sleep

Light Sleep

Deep Sleep

General Anesthesia

Coma

Wakefulness

Mechanisms of General Anesthesia

- Originally, Purely “Empirical” Treatment
- Informal Theories
 - Alter Membrane Dynamics
 - Inhibit Action Potentials
 - Interfere Axonal Transmission
 - Interfere with Synaptic Transmission
 - Neurotransmitter Release
 - Neurotransmitter Uptake
Single-Process Theories of General Anesthesia

- Dissolve in Lipid Bilayers of Neurons
 - Fat cells
 - Form Plasma Membrane of Neuronal Cell
 - Expansion of Cell Membranes
 - Close Ion Channels
- Bind Directly to Proteins in Neuron
 - Stabilize Shape
 - Alters Suitability for "Lock and Key" Mechanism
 - Interferes with Synaptic Transmission
 - Mostly on Post-Synaptic Side

Dual-Process Theory of General Anesthesia

- Inhibit Excitatory Neurotransmitters
 - N-methyl-D-aspartate (NMDA) receptors
- Potentiate Inhibitory Neurotransmitters
 - Gamma-Aminobutyric Acid (GABA) receptors

Pharmacological Mechanisms

- Halogenated Ethers
 - Alters Lipid Membrane
 - Alters Action of Sodium Pump
 - "Depolarization"
- Narcotics
 - Interfere with Postsynaptic Uptake
 - "Lock and Key"
Clinical Assessment of Consciousness

- Lack of Response
 - Verbal Command
 - "Surgical Stimulation"
- No awareness of pain during procedure
- No memory of surgical events

Loss of Consciousness

- <<1% Report Surgical Awareness
 - 0.2% of General Surgical Cases
 - 0.4-1.8% of Malpractice Claims
 - Post-Traumatic Stress Disorder
- "Light Planes" of Anesthesia
 - Caesarian Section
 - Trauma Surgery
 - Cardiopulmonary Bypass Surgery
 - Neurosurgery

Minimum Alveolar Concentration
Potency of Inhaled Anesthetic

- MAC
 - Prevents Movement to Stimulation
 - In 50% of Subjects
- MAC-Aware
 - Eliminates Awareness of Stimulation
 - In 50% of Subjects
- Analogy to Sensory Thresholds
- Standard of Care = 1.3 MAC
PRST Score
Autonomic Nervous System Index of Consciousness

- Blood Pressure
- Heart Rate
- Sweating
- Secretion of Tears

Central Nervous System Indices of Consciousness

- Event-Related (Evoked) Potential
- EEG Power Spectrum
- Bispectral Index

Event-Related (Evoked) Potential

- Stimulus
 - Auditory
 - Visual
 - Somatosensory
- Components
 - Early (Brainstem)
 - Middle (Subcortical)
 - Late (Cortical)
- Auditory “AEP Index”
 - Abolish late components
 - Delay Midlatency Components
EEG Power Spectrum

- EEG Bands
 - Delta (0.5-4 Hz)
 - Theta (5-7 Hz)
 - Alpha (8-12 Hz)
 - Beta (18-30 Hz)
 - Gamma (30-50 Hz)

- Median $f < 2-3$ Hz
- Spectral Edge $f < 8-12$ Hz

Bispectral Analysis (BIS)
Aspect Medical Systems (Sigl et al., 1994; Kelly, 2007)

- BIS Algorithm
 - High-Frequency Activation (14-30 Hz)
 - Low-Frequency Synchronization
 - Periods of “Nearly Suppressed” EEG
 - Presence of “Flat Line” EEG

- Bispectral Index
 - Awake = 100
 - 50% reduction in recall = 86
 - 95% reduction in recall = 64
 - Anesthetized < 60

McSleepy, the Anesthesia Robot
Hemmerling et al. (2008)

- Automated Delivery of Anesthesia
- Consciousness
 - Bispectral Index
- Muscle Relaxation
 - EMG Variant
- Pain (Proxies)
 - Heart Rate
 - Blood Pressure
- Met DaVinci, the Surgical Robot, in 2010
 - Performed Trans-Atlantic Prostatectomy in Italy
Explicit vs. Implicit Memory
Following General Anesthesia
Kihlstrom, Schacter, Cork, et al. (1990)

• Elective Surgery
• Isoflurane
 – No Nitrous Oxide
 – No Benzodiazepines
• Paired-Associates
 – Ocean-Water, Butter-Knife
 – M Time = 50 min, M Repetitions = 67
• Memory Tests
 – In Recovery Room; After 14 days

Explicit and Implicit Memory
Following General Anesthesia
Kihlstrom, Schacter, Cork, et al. (1990)

Immediate Test

<table>
<thead>
<tr>
<th>Memory Test</th>
<th>% of Targets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cued Recall</td>
<td>0.1</td>
</tr>
<tr>
<td>Recog</td>
<td>0.3</td>
</tr>
<tr>
<td>Free Ass'n</td>
<td>0.7</td>
</tr>
</tbody>
</table>

Critical vs. Neutral

Implicit Memory Following General Anesthesia
Merkle & Daneman (1996)

Mean Effect Size (r)

<table>
<thead>
<tr>
<th>Retention Interval</th>
<th>Effect Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 12 hrs</td>
<td>0.25</td>
</tr>
<tr>
<td>12-36 hrs</td>
<td>0.20</td>
</tr>
<tr>
<td>> 36 hrs</td>
<td>0.15</td>
</tr>
</tbody>
</table>
Nature of Explicit Memory Deficits in Surgical Anesthesia

- Loss of Consciousness
- Loss of Memory
 - Anterograde Amnesia?
 - Retrograde Amnesia
- Is the Patient Aware, and Then Forgets?

Is the Anesthetized Patient Aware During Surgery but Unable to Respond?

Isolated Forearm Technique
Tunstall (1977)

- Balanced Anesthesia
 - Induction
 - Muscle Relaxant
 - Maintenance
- Forearm Ischemia
 - Prevents Muscle Relaxant from Circulating to One Arm
Awareness During Caesarian Section
King et al. (1993)

![Graph showing the percentage of awareness during caesarian section assessment.](image)

24 New Studies, 1993-2006
Deeprose & Andrade (2006)

- **Assessment of Awareness**
 - Isolated Forearm Technique
 - Auditory Evoked Potentials
 - Processed EEG
 - Bispectral Index
 - Spectral Edge Frequency
 - Narcotrend

- **44 Tests of Implicit Memory**
 - "Mixed" Evidence Favoring Perceptual Priming
 - No Evidence Favoring Semantic Priming

Priming and Anesthesia
Iselin-Chaves et al. (2005, 2006)

- **48 Patients Receiving Isoflurane or Propofol**
 - Unpremedicated
- **40 Words Presented 25 Consecutive Times**
- **Auditory Word-Stem Completion**
 - Within 36 Hours of Surgery
 - Inclusion and Exclusion Instructions
- **Anesthesia Monitored by BIS**
 - Light = 61-80
 - Adequate = 41-60
 - Deep = 21-40
Anesthetic Effects on Memory

- No Explicit Memory for Surgical Events
 - By Clinical Definition of Adequate Anesthesia

- Spared Implicit Memory
 - Perceptual vs. Semantic Priming
 - Not An Artifact of Surgical Awareness
 - Clinically Adequate Anesthesia
 - Confirmed by EEG Monitoring
 - Process-Dissociation Procedure
 - Automatic vs. Controlled Influences

- Implicit Memory as Implicit Perception
 - No Conscious Perception of Primes