The Arithmetical Hierarchy in the Setting of ω_1 - Computability

Jesse Johnson

Department of Mathematics
University of Notre Dame

2011 ASL North American Meeting – March 26, 2011
A.H. in ω_1 - computability

- Joint work with Jacob Carson, Julia Knight, Karen Lange, Charles McCoy, John Wallbaum.

- *The Arithmetical hierarchy in the setting of ω_1 - computability*, preprint.

- Continuation of work from N. Greenberg and J. F. Knight, *Computable structure theory in the setting of ω_1*.
Two definitions for the arithmetical hierarchy

We will give two definitions for the arithmetical hierarchy in the setting of ω_1 - computability.

- The first will resemble the definition of the effective Borel Hierarchy.
- The second will resemble the standard definition of the hyper-arithmetical hierarchy.
Suppose R is a relation of countable arity α.

- R is **computably enumerable** if the set of ordinal codes for sequences in R is definable by a Σ_1 formula in (L_{ω_1}, ϵ).

- R is **computable** if it is both c.e. and co-c.e.
We assume that $P(\omega) \subseteq L_{\omega_1}$.

Results of Gödel give a computable 1-1 function g from the countable ordinals onto L_{ω_1}, such that the relation $g(\alpha) \in g(\beta)$ is computable.

So, computing in ω_1 is essentially the same as computing in L_{ω_1}.
Indices for c.e. sets

- As in the standard setting, we have a c.e. set of codes for Σ_1 definitions.
- We write W_α for the c.e. set with index α.
- All these definitions relativize in the natural way.
The jump

Definition

- We define the **halting set** as \(K = \{ \alpha : \alpha \in W_\alpha \} \).
- For a arbitrary set \(X \), \(X' = \{ \alpha : \alpha \in W^X_\alpha \} \).
- \(X^{(0)} = X \).
- \(X^{(\alpha+1)} = (X^{(\alpha)})' \).
- For limit \(\lambda \), \(X^{(\lambda)} \) is the set of codes for pairs \((\beta, x) \) such that \(\beta < \lambda \) and \(x \in X^{(\beta)} \).

- We write \(\Delta^0_n \) for \(\varnothing^{n-1} \) for \(1 \leq n < \omega \).
- We write \(\Delta^0_\alpha \) for \(\varnothing^\alpha \) for \(\alpha \geq \omega \).
Our first definition of the arithmetical hierarchy resembles the definition of the effective Borel hierarchy.

Definition

Let R be a relation.

- R is Σ^0_0 and Π^0_0 if it is computable.
- R is Σ^0_1 if it is c.e.; R is Π^0_1 if the complementary relation, $\neg R$, is c.e.
- For countable $\alpha > 1$, R is Σ^0_α if it is a c.e. union of relations, each of which is Π^0_β for some $\beta < \alpha$; R is Π^0_α if $\neg R$ is Σ^0_α.
For \(\alpha \geq 1 \), we may assign indices for the \(\Sigma_\alpha^0 \) and \(\Pi_\alpha^0 \) sets in the natural way.

- For \(\alpha = 1 \), we write \((\Sigma, 1, \gamma)\) as the index for the c.e. set with index \(\gamma \).

- The set with index \((\Pi, 1, \gamma)\) is the complement.

- For \(\alpha > 1 \), the set with index \((\Sigma, \alpha, \gamma)\) is the union of sets with indices in \(W_\gamma \) of the form \((\Pi, \beta, \delta)\) for some \(\beta < \alpha \) and some countable \(\delta \).

- The set with index \((\Pi, \alpha, \gamma)\) is the complement.
Second definition for the arithmetical hierarchy

Our second definition for the arithmetical hierarchy resembles the standard definition for the hyper-arithmetic hierarchy.

Definition

Let R be a relation.

- R is Σ^0_0 and Π^0_0 if it is computable.
- R is Σ^0_1 if it is c.e.; R is Π^0_1 if $\neg R$, is c.e.
- For $\alpha > 1$, R is Σ^0_α if it is c.e. relative to Δ^0_α; R is Π^0_α if $\neg R$ is Σ^0_α.

We assign indices for the Σ^0_α and Π^0_α sets in the same way.
Comparing the two definitions

The two definitions agree at finite levels, but disagree at level ω and beyond.

- Under the first definition, membership of an element into a Σ^0_α set occurs if and only if that element is a member of one of the lower Π^0_β sets.

- So membership into a Σ^0_α set uses information from a single lower level.

- Under the second definition, membership of an element into a Σ^0_α set may use a Δ^0_α oracle to get information from all lower levels simultaneously.
The two definitions disagree at level ω

Proposition

There is a set S that is Δ^0_ω under the second definition, but is not Σ^0_ω under the first definition.
Proof.

- Define S such that $\alpha \in S$ iff α is not in the set with index (Σ, ω, α) under the first definition.
- For each n, α, let $S_{\alpha,n}$ be the union of the Σ^0_n sets with indices in W_α of the form (Π, k, β) with $k < n$.
- The union of these sets over all n will be the set with index (Σ, ω, α).
- A Δ^0_ω oracle can determine whether $\alpha \in S_{n,\alpha}$ for all n. So S is Δ^0_ω under the second definition.
- However, S cannot be one of the Σ^0_ω sets under the first definition.
The first definition of the computable infinitary formulas corresponds to the first definition of the arithmetical hierarchy.

Definition

Let L be a predicate language with computable symbols. We consider L-formulas $\varphi(\bar{x})$ with a countable tuple of variables \bar{x}.

- $\varphi(\bar{x})$ is **computable** Σ_0 and **computable** Π_0 if it is a quantifier-free formula of $L_{\omega_1,\omega}$.
- For $\alpha > 0$, $\varphi(\bar{x})$ is **computable** Σ_α if $\varphi \equiv \bigvee (\exists \bar{u})\psi_i(\bar{u}, \bar{x})$, where each ψ_i is computable Π_β for some $\beta < \alpha$.
- $\varphi(\bar{x})$ is **computable** Π_α if $\varphi \equiv \bigwedge (\forall \bar{u})\psi_i(\bar{u}, \bar{x})$, where each ψ_i is computable Σ_β for some $\beta < \alpha$.
Computable infinitary formulas

The second definition of the computable infinitary formulas corresponds to the second definition of the arithmetical hierarchy.

Definition

- $\varphi(x)$ is **computable** Σ_0 and **computable** Π_0 if it is a quantifier-free formula of $L_{\omega_1,\omega}$.
- For $\alpha > 0$, $\varphi(x)$ is **computable** Σ_α if $\varphi \equiv \bigvee_c (\exists u) \psi_i(u, x)$, where each ψ_i is a **countable conjunction of formulas**, each computable Π_β for some $\beta < \alpha$.
- $\varphi(x)$ is **computable** Π_α if $\varphi \equiv \bigwedge_c (\forall u) \psi_i(u, x)$, where each ψ_i is a **countable disjunction of formulas**, each computable Σ_β for some $\beta < \alpha$.
Using either one of the definitions for the computable infinitary formulas, the following proposition holds and is proved by induction on α.

Proposition

Let A be an L-structure, and let $\varphi(\vec{x})$ be a computable Σ_α (computable Π_α) L-formula. Then the relation defined by $\varphi(\vec{x})$ in A is Σ^0_α (Π^0_α) relative to A.
Relatively intrinsically arithmetical relations

Definition

- Let \mathcal{A} be a computable structure, and let R be a relation on \mathcal{A}.
- We say that R is **relatively intrinsically** \sum^0_α on \mathcal{A} if for all isomorphisms F from \mathcal{A} onto a copy \mathcal{B}, $F(R)$ is $\sum^0_\alpha(\mathcal{B})$.
We now present our main theorem.

Theorem

Let $1 \leq \alpha < \omega_1$. For a relation R on a computable structure A, the following are equivalent:

1. R is relatively intrinsically Σ^0_α on A.
2. R is defined by a computable Σ_α formula.
Idea of the proof

- The theorem requires two proofs, one for each definition of the arithmetical hierarchy.
- In either case, the proof for $2 \Rightarrow 1$ follows directly from the proposition.
- This is because a computable Σ_α formula is $\Sigma^0_\alpha(B)$ for any structure B. So it must be relatively intrinsically Σ^0_α in A.
- The proof for $1 \Rightarrow 2$ invokes the use of forcing by building an isomorphism from a generic copy B onto A, where our forcing elements are partial isomorphisms.
- The proof is similar to that of the analogous result in the standard setting.
Which definition is better?

- It is not very efficacious to have two definitions for the arithmetical hierarchy.
- The authors believe that the second definition is a more natural definition.
- Consider our previous construction of the set that highlighted the differences in the definitions.
- In the standard setting, an element enters a Σ^0_ω set based on finitely much Δ^0_ω information.
- It seems natural that a membership into a Σ^0_ω set should use countably much Δ^0_ω information.
References

- Greenberg, N. & Knight J. F., Computable structure theory in the setting of ω_1, Proceedings of first EMU workshop, to appear.