Financial “Whac-a-Mole”:
Bubbles, Commodity Prices and Global Imbalances

R. Caballero1,4 E. Farhi2,4 P. Gourinchas3,4

1MIT, 2Harvard, 3Berkeley, 4NBER

September 11-12, 2008 / Brookings Panel on Economic Activity
Bubbles, Commodity Prices and Global Imbalances

- Bubbles...

![Graph of S&P/Case Shiller National Home Price Index (CPI deflated)]

- Asian Crisis
- Subprime Crisis

- Financial “Whac-a-Mole”
Commodity Prices (2008 USD price of a barrel of WTI)...
Global Imbalances (CA deficits as percent of World GDP)

-2.0% -1.5% -1.0% -0.5% 0.0% 0.5% 1.0% 1.5%

% of World GDP

Asian Crisis

Subprime Crisis

U.S. Oil Producers Emerging Asia Europe & Japan

Financial “Whac-a-Mole”
The Role of Asset Supply.

The Economic Mechanism:

- Global scarcity of asset supply depresses world real interest rates (Caballero, Farhi & Gourinchas (2008));
- Creates an environment that is prone to bubbles: Japan; EM Asia; NASDAQ; US housing market & subprime;
- Financial ‘Whac-a-Mole’: another bubble is likely to emerge somewhere else....
- The financial crisis transforms oil into an asset (or a new bubble):
 - Lower real interest rates make oil inventory accumulation profitable
 - One shock, not two!

Global Imbalances:

- U.S. Financial crisis should provoke a dramatic rebalancing;
- But petrodollar flows limits severely the extent of rebalancing:
The Role of Asset Supply.

The Economic Mechanism:
- Global scarcity of asset supply **depresses world real interest rates** (Caballero, Farhi & Gourinchas (2008));
- Creates an environment that is prone to bubbles: Japan; EM Asia; NASDAQ; US housing market & subprime;
- Financial ‘Whac-a-Mole’: another bubble is likely to emerge somewhere else....
- The financial crisis transforms oil into an asset (or a new bubble):
 - Lower real interest rates make oil inventory accumulation profitable
 - One shock, not two!

Global Imbalances:
- U.S. Financial crisis should provoke a dramatic rebalancing;
- But petrodollar flows limits severely the extent of rebalancing:
The Role of Asset Supply.

The Economic Mechanism:

- Global scarcity of asset supply depresses world real interest rates (Caballero, Farhi & Gourinchas (2008));
- Creates an environment that is prone to bubbles: Japan; EM Asia; NASDAQ; US housing market & subprime;
- Financial ‘Whac-a-Mole’: another bubble is likely to emerge somewhere else....
- The financial crisis transforms oil into an asset (or a new bubble):
 - Lower real interest rates make oil inventory accumulation profitable
 - One shock, not two!
- Global Imbalances:
 - U.S. Financial crisis should provoke a dramatic rebalancing;
 - But petrodollar flows limits severely the extent of rebalancing:
The Role of Asset Supply.

The Economic Mechanism:
- Global scarcity of asset supply depresses world real interest rates (Caballero, Farhi & Gourinchas (2008));
- Creates an environment that is prone to bubbles: Japan; EM Asia; NASDAQ; US housing market & subprime;
- **Financial ‘Whac-a-Mole’**: another bubble is likely to emerge somewhere else....
- The financial crisis transforms oil into an asset (or a new bubble):
 - Lower real interest rates make oil inventory accumulation profitable
 - One shock, not two!
- **Global Imbalances**:
 - U.S. Financial crisis should provoke a dramatic rebalancing;
 - But petrodollar flows limits severely the extent of rebalancing;
The Role of Asset Supply.

The Economic Mechanism:

- Global scarcity of asset supply depresses world real interest rates (Caballero, Farhi & Gourinchas (2008));
- Creates an environment that is prone to bubbles: Japan; EM Asia; NASDAQ; US housing market & subprime;
- Financial ‘Whac-a-Mole’: another bubble is likely to emerge somewhere else....
- The financial crisis transforms oil into an asset (or a new bubble):
 - Lower real interest rates make oil inventory accumulation profitable
 - One shock, not two!

Global Imbalances:

- U.S. Financial crisis should provoke a dramatic rebalancing;
- But petrodollar flows limits severely the extent of rebalancing:
The Role of Asset Supply.

The Economic Mechanism:
- Global scarcity of asset supply depresses world real interest rates (Caballero, Farhi & Gourinchas (2008));
- Creates an environment that is prone to bubbles: Japan; EM Asia; NASDAQ; US housing market & subprime;
- Financial ‘Whac-a-Mole’: another bubble is likely to emerge somewhere else....
- The financial crisis transforms oil into an asset (or a new bubble):
 - Lower real interest rates make oil inventory accumulation profitable
 - One shock, not two!
- Global Imbalances:
 - U.S. Financial crisis should provoke a dramatic rebalancing;
 - But petrodollar flows limits severely the extent of rebalancing;
The Role of Asset Supply.

The Economic Mechanism:
- Global scarcity of asset supply depresses world real interest rates (Caballero, Farhi & Gourinchas (2008));
- Creates an environment that is prone to bubbles: Japan; EM Asia; NASDAQ; US housing market & subprime;
- Financial ‘Whac-a-Mole’: another bubble is likely to emerge somewhere else....
- The financial crisis transforms oil into an asset (or a new bubble):
 - Lower real interest rates make oil inventory accumulation profitable
 - One shock, not two!

Global Imbalances:
- U.S. Financial crisis should provoke a dramatic rebalancing;
- But petrodollar flows limits severely the extent of rebalancing:
The Role of Asset Supply.

- The Economic Mechanism:
 - Global scarcity of asset supply depresses world real interest rates (Caballero, Farhi & Gourinchas (2008));
 - Creates an environment that is prone to bubbles: Japan; EM Asia; NASDAQ; US housing market & subprime;
 - Financial ‘Whac-a-Mole’: another bubble is likely to emerge somewhere else....
 - The financial crisis transforms oil into an asset (or a new bubble):
 - Lower real interest rates make oil inventory accumulation profitable
 - One shock, not two!

- Global Imbalances:
 - U.S. Financial crisis should provoke a dramatic rebalancing;
 - But petrodollar flows limits severely the extent of rebalancing:
The Role of Asset Supply.

- **The Economic Mechanism:**
 - Global scarcity of asset supply depresses world real interest rates (Caballero, Farhi & Gourinchas (2008));
 - Creates an environment that is prone to bubbles: Japan; EM Asia; NASDAQ; US housing market & subprime;
 - Financial ‘Whac-a-Mole’: another bubble is likely to emerge somewhere else....
 - The financial crisis transforms oil into an asset (or a new bubble):
 - Lower real interest rates make oil inventory accumulation profitable
 - One shock, not two!

- **Global Imbalances:**
 - U.S. Financial crisis *should* provoke a dramatic rebalancing;
 - But petrodollar flows limits severely the extent of rebalancing:
The Role of Asset Supply.

The Economic Mechanism:
- Global scarcity of asset supply depresses world real interest rates (Caballero, Farhi & Gourinchas (2008));
- Creates an environment that is prone to bubbles: Japan; EM Asia; NASDAQ; US housing market & subprime;
- Financial ‘Whac-a-Mole’: another bubble is likely to emerge somewhere else....
- The financial crisis transforms oil into an asset (or a new bubble):
 - Lower real interest rates make oil inventory accumulation profitable
 - One shock, not two!

Global Imbalances:
- U.S. Financial crisis should provoke a dramatic rebalancing;
- But petrodollar flows limits severely the extent of rebalancing:
The Role of Asset Supply.

Quantitatively:

- The mechanism we highlight is in the right ballpark;
- We explain:
 - the decline in world interest rates,
 - the volatility in oil prices,
 - small changes in inventories,
 - limited global rebalancing;
The Role of Asset Supply.

Quantitatively:
- The mechanism we highlight is in the right ballpark;
- We explain: the decline in world interest rates, the volatility in oil prices, small changes in inventories, limited global rebalancing;
The Role of Asset Supply.

Quantitatively:
- The mechanism we highlight is in the right ballpark;
- We explain:
 - the decline in world interest rates,
 - the volatility in oil prices,
 - small changes in inventories,
 - limited global rebalancing;
The Role of Asset Supply.

Quantitatively:
- The mechanism we highlight is in the right ballpark;
- We explain:
 - the decline in world interest rates,
 - the volatility in oil prices,
 - small changes in inventories,
 - limited global rebalancing;
The Role of Asset Supply.

Quantitatively:
- The mechanism we highlight is in the right ballpark;
- We explain:
 - the decline in world interest rates,
 - the volatility in oil prices,
 - small changes in inventories,
 - limited global rebalancing;
The Model: The Global Equilibrium

Consumption

\[C_t = \theta W_t \]

\[\{ \begin{align*}
\text{numeraire} & \quad X_t^d = C_t / (1 + \alpha) \\
\text{commodities} & \quad p_t Z_t^d = \alpha C_t / (1 + \alpha)
\end{align*} \]

\(X_t \) grows at rate \(g \); \(Z \) is constant.

Asset Supply

Good Assets \(\rightarrow V_t \) \(\{ \delta X_{t+s} \} \)
Inventories \(\rightarrow p_t I_t \)
Rational Bubble \(\rightarrow B_t \)

Asset market equilibrium:

\[W_t = V_t + p_t I_t + B_t; \]

Inventories:

\[\dot{p}_t / p_t \leq r_t \text{ with equality when } I_t \text{ or } \dot{I}_t > 0; \]

Low asset supply:

\[r_{\text{ref}} = \delta \theta / (1 + \alpha) < g; \]
The Model: The Global Equilibrium

Consumption
\[C_t = \theta W_t \]
\[\{ \begin{align*}
\text{numeraire} & \quad X_t^d = C_t / (1 + \alpha) \\
\text{commodities} & \quad p_t Z_t^d = \alpha C_t / (1 + \alpha)
\end{align*} \]

\(X_t \) grows at rate \(g \); \(Z \) is constant.

Asset Supply

Good Assets \(\rightarrow \) \(V_t \) \(\{ \delta X_{t+s} \} \)
Inventories \(\rightarrow \) \(p_t I_t \)
Rational Bubble \(\rightarrow \) \(B_t \)

Asset market equilibrium:
\[W_t = V_t + p_t I_t + B_t; \]

Inventories:
\[\dot{p}_t / p_t \leq r_t \text{ with equality when } I_t \text{ or } \dot{I}_t > 0; \]

Low asset supply:
\[r_{\text{ref}} = \delta \theta / (1 + \alpha) < g; \]
The Model: The Global Equilibrium

Consumption

\[C_t = \theta W_t \]

\[\begin{cases}
\text{numeraire} & X_t^d = C_t / (1 + \alpha) \\
\text{commodities} & p_t Z_t^d = \alpha C_t / (1 + \alpha)
\end{cases} \]

\(X_t \) grows at rate \(g \); \(Z \) is constant.

Asset Supply

Good Assets \(\rightarrow \) \(V_t \) \{\(\delta X_{t+s} \)\}

Inventories \(\rightarrow \) \(p_t I_t \)

Rational Bubble \(\rightarrow \) \(B_t \)

Asset market equilibrium:

\[W_t = V_t + p_t I_t + B_t; \]

Inventories:

\[\dot{p}_t / p_t \leq r_t \] with equality when \(I_t \) or \(\dot{I}_t > 0; \]

Low asset supply:

\[r_{ref} = \delta \theta / (1 + \alpha) < g; \]
The Model: The Global Equilibrium

Consumption

\[C_t = \theta W_t \]

\[X_t^d = C_t / (1 + \alpha) \]

\[p_t Z_t^d = \alpha C_t / (1 + \alpha) \]

\(X_t \) grows at rate \(g \); \(Z \) is constant.

Asset Supply

- **Good Assets** → \(V_t \) \(\{ \delta X_{t+s} \} \)
- **Inventories** → \(p_t I_t \)
- **Rational Bubble** → \(B_t \)

Asset market equilibrium:

\[W_t = V_t + p_t I_t + B_t; \]

Inventories:

\[\hat{p}_t / p_t \leq r_t \text{ with equality when } I_t \text{ or } \hat{I}_t > 0; \]

Low asset supply:

\[r_{ref} = \delta \theta / (1 + \alpha) < g; \]
The Model: The Global Equilibrium

Consumption

\[C_t = \theta W_t \]

\[\begin{align*}
X_t^d &= C_t / (1 + \alpha) \\
\alpha C_t / (1 + \alpha) &\leq p_t Z_t^d
\end{align*} \]

\[X_t \text{ grows at rate } g; \ Z \text{ is constant.} \]

Asset Supply

Good Assets \rightarrow V_t \quad \{ \delta X_{t+s} \}

Inventories \rightarrow p_t I_t

Rational Bubble \rightarrow B_t

Asset market equilibrium:

\[W_t = V_t + p_t I_t + B_t; \]

Inventories:

\[\frac{\dot{p}_t}{p_t} \leq r_t \text{ with equality when } I_t \text{ or } \dot{I}_t > 0; \]

Low asset supply:

\[r^{\text{ref}} = \delta \theta / (1 + \alpha) < g; \]
The Model: The Global Equilibrium

Consumption

\[C_t = \theta W_t \]

- numeraire commodities
 \[X_t^d = C_t / (1 + \alpha) \]
- commodities
 \[p_t Z_t^d = \alpha C_t / (1 + \alpha) \]

\(X_t \) grows at rate \(g \); \(Z \) is constant.

Asset Supply

- Good Assets \(\rightarrow V_t \) \{\(\delta X_{t+s} \)\}
- Inventories \(\rightarrow p_t I_t \)
- Rational Bubble \(\rightarrow B_t \)

Asset market equilibrium:

\[W_t = V_t + p_t I_t + B_t; \]

Inventories:

\[\dot{p}_t / p_t \leq r_t \] with equality when \(I_t \) or \(\dot{I}_t > 0 \);

Low asset supply:

\[r^{\text{ref}} = \delta \theta / (1 + \alpha) < g; \]
The Model: The Global Equilibrium

Consumption
\[C_t = \theta W_t \]
\[\begin{cases}
\text{numeraire} & X_t^d = C_t / (1 + \alpha) \\
\text{commodities} & p_t Z_t^d = \alpha C_t / (1 + \alpha)
\end{cases} \]

\(X_t \) grows at rate \(g \); \(Z \) is constant.

Asset Supply
- Good Assets \(\rightarrow \) \(V_t \) \(\{ \delta X_{t+s} \} \)
- Inventories \(\rightarrow \) \(p_t I_t \)
- Rational Bubble \(\rightarrow \) \(B_t \)

Asset market equilibrium:
\[W_t = V_t + p_t I_t + B_t; \]

Inventories:
\[\dot{p}_t / p_t \leq r_t \text{ with equality when } I_t \text{ or } \dot{I}_t > 0; \]

Low asset supply:
\[r_{\text{ref}} = \delta \theta / (1 + \alpha) < g; \]
The Model: The Global Equilibrium

- Consumption
 \[C_t = \theta W_t \]
 \[\begin{align*}
 \text{numeraire} & \quad X_t^d = C_t / (1 + \alpha) \\
 \text{commodities} & \quad p_t Z_t^d = \alpha C_t / (1 + \alpha)
 \end{align*} \]

 \(X_t \) grows at rate \(g \); \(Z \) is constant.

- Asset Supply
 \begin{align*}
 \text{Good Assets} & \quad \rightarrow V_t \quad \{\delta X_{t+s}\} \\
 \text{Inventories} & \quad \rightarrow p_t I_t \\
 \text{Rational Bubble} & \quad \rightarrow B_t
 \end{align*}

- Asset market equilibrium:
 \[W_t = V_t + p_t I_t + B_t; \]

- Inventories:
 \[\dot{p}_t / p_t \leq r_t \] with equality when \(I_t \) or \(\dot{I}_t > 0; \]

- Low asset supply:
 \[r^{\text{ref}} = \delta \theta / (1 + \alpha) < g; \]
The Model: The Global Equilibrium

• Consumption
 \[C_t = \theta W_t \]
 \[
 \begin{align*}
 &\text{numeraire} \quad X_t^d = C_t / (1 + \alpha) \\
 &\text{commodities} \quad p_t Z_t^d = \alpha C_t / (1 + \alpha)
 \end{align*}
 \]

 \(X_t \) grows at rate \(g \); \(Z \) is constant.

• Asset Supply

 \[
 \begin{align*}
 &\text{Good Assets} \quad \rightarrow \quad V_t \quad \{\delta X_{t+s}\} \\
 &\text{Inventories} \quad \rightarrow \quad p_t I_t \\
 &\text{Rational Bubble} \quad \rightarrow \quad B_t
 \end{align*}
 \]

• Asset market equilibrium:
 \[W_t = V_t + p_t I_t + B_t; \]

• Inventories:
 \[\dot{p}_t / p_t \leq r_t \text{ with equality when } I_t \text{ or } \dot{I}_t > 0; \]

• Low asset supply:
 \[r_{ref} = \delta \theta / (1 + \alpha) < g; \]
The impact of the subprime crisis.
Global Rebalancing.

Two regions: U (US) and M (Produces Z). Start with Bubble located in U and no inventories.

- **Long Run Rebalancing:**
 - Inventories increase asset supply and limit asset demand from M.
 - Smaller CA deficits in U. More rebalancing.

- **Short Run Rebalancing:**
 - Inventories are still low, but M is richer because of high p;
 - Implies even lower interest rates and recycling of petrodollars from M to U.
 - With low short run price-elasticity, less rebalancing.
Global Rebalancing.

Two regions: U (US) and M (Produces Z).
Start with Bubble located in U and no inventories.

- **Long Run Rebalancing**:
 - Inventories increase asset supply and limit asset demand from M.
 - Smaller CA deficits in U. More rebalancing.

- **Short Run Rebalancing**:
 - Inventories are still low, but M is richer because of high p;
 - Implies even lower interest rates and recycling of petrodollars from M to U.
 - With low short run price-elasticity, less rebalancing.
Global Rebalancing.

Two regions: U (US) and M (Produces Z). Start with Bubble located in U and no inventories.

- **Long Run Rebalancing:**
 - Inventories increase asset supply and limit asset demand from M.
 - Smaller CA deficits in U. More rebalancing.

- **Short Run Rebalancing:**
 - Inventories are still low, but M is richer because of high p;
 - Implies even lower interest rates and recycling of petrodollars from M to U.
 - With low short run price-elasticity, less rebalancing.
Global Rebalancing.

Two regions: U (US) and M (.Produces Z).
Start with Bubble located in U and no inventories.

- **Long Run Rebalancing:**
 - Inventories increase asset supply and limit asset demand from M.
 - Smaller CA deficits in U. *More rebalancing.*

- **Short Run Rebalancing:**
 - Inventories are still low, but M is richer because of high p;
 - Implies even lower interest rates and recycling of petrodollars from M to U.
 - With low short run price-elasticity, less rebalancing.
Global Rebalancing.

Two regions: \(U \) (US) and \(M \) (Produces \(Z \)).
Start with Bubble located in \(U \) and no inventories.
- **Long Run Rebalancing:**
 - Inventories increase asset supply and limit asset demand from \(M \).
 - Smaller CA deficits in \(U \). More rebalancing.
- **Short Run Rebalancing:**
 - Inventories are still low, but \(M \) is richer because of high \(p \);
 - Implies even lower interest rates and recycling of petrodollars from \(M \) to \(U \).
 - With low short run price-elasticity, less rebalancing.
Global Rebalancing.

Two regions: U (US) and M (Produces Z). Start with Bubble located in U and no inventories.

- **Long Run Rebalancing:**
 - Inventories increase asset supply and limit asset demand from M.
 - Smaller CA deficits in U. More rebalancing.

- **Short Run Rebalancing:**
 - Inventories are still low, but M is richer because of high p;
 - Implies even lower interest rates and recycling of petrodollars from M to U.
 - With low short run price-elasticity, less rebalancing.
Two regions: U (US) and M (Produces Z).
Start with Bubble located in U and no inventories.

- **Long Run Rebalancing:**
 - Inventories increase asset supply and limit asset demand from M.
 - Smaller CA deficits in U. More rebalancing.

- **Short Run Rebalancing:**
 - Inventories are still low, but M is richer because of high p;
 - Implies even lower interest rates and recycling of petrodollars from M to U.
 - With low short run price-elasticity, less rebalancing.
Global Rebalancing.

Two regions: U (US) and M (Produces Z).
Start with Bubble located in U and no inventories.

- **Long Run Rebalancing:**
 - Inventories increase asset supply and limit asset demand from M.
 - Smaller CA deficits in U. **More rebalancing.**

- **Short Run Rebalancing:**
 - Inventories are still low, but M is richer because of high p;
 - Implies even lower interest rates and recycling of petrodollars from M to U.
 - With low short run price-elasticity, **less rebalancing.**
Global Imbalances with price-elasticity < 1

Panel A: Real Interest Rate (percent)

Panel B: normalized commodity prices

Panel C: p*I/W

Panel D: CA/X, U-region
Orders of Magnitude...

Initial Conditions:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Predicted Value</th>
<th>Data Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost of Financial Crisis</td>
<td>$2-$4 trillion</td>
<td></td>
</tr>
<tr>
<td>Net Foreign Asset Position (relative to GDP)</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>Short run price elasticity of oil demand</td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>Expenditure share on oil</td>
<td>0.04</td>
<td></td>
</tr>
</tbody>
</table>

The Short Run Changes:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Predicted Inv.</th>
<th>Predicted No Inv.</th>
<th>Data Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real Interest Rates (%)</td>
<td>-1.2</td>
<td>-1.0</td>
<td>-1.4</td>
</tr>
<tr>
<td>Crude Oil Prices (%)</td>
<td>98</td>
<td>0</td>
<td>108</td>
</tr>
<tr>
<td>Current Account (% of GDP)</td>
<td>2.80</td>
<td>6.20</td>
<td>1.30</td>
</tr>
</tbody>
</table>
Orders of Magnitude...

Initial Conditions:

Cost of Financial Crisis	$2-$4 trillion
Net Foreign Asset Position (relative to GDP)	0.15
Short run price elasticity of oil demand	0.10
Expenditure share on oil	0.04

The Short Run Changes:

<table>
<thead>
<tr>
<th></th>
<th>Predicted</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inv.</td>
<td>No Inv.</td>
</tr>
<tr>
<td>Real Interest Rates (%)</td>
<td>-1.2</td>
<td>-1.0</td>
</tr>
<tr>
<td>Crude Oil Prices (%)</td>
<td>98</td>
<td>0</td>
</tr>
<tr>
<td>Current Account (% of GDP)</td>
<td>2.80</td>
<td>6.20</td>
</tr>
</tbody>
</table>
Orders of Magnitude...

- **Initial Conditions:**
 - Cost of Financial Crisis: $2-$4 trillion
 - Net Foreign Asset Position (relative to GDP): 0.15
 - Short run price elasticity of oil demand: 0.10
 - Expenditure share on oil: 0.04

- **The Short Run Changes:**

<table>
<thead>
<tr>
<th></th>
<th>Predicted Inv.</th>
<th>Predicted No Inv.</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real Interest Rates (%)</td>
<td>-1.2</td>
<td>-1.0</td>
<td>-1.4</td>
</tr>
<tr>
<td>Crude Oil Prices (%)</td>
<td>98</td>
<td>0</td>
<td>108</td>
</tr>
<tr>
<td>Current Account (% of GDP)</td>
<td>2.80</td>
<td>6.20</td>
<td>1.30</td>
</tr>
</tbody>
</table>
Orders of Magnitude...

Initial Conditions:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost of Financial Crisis</td>
<td>$2-$4 trillion</td>
</tr>
<tr>
<td>Net Foreign Asset Position (relative to GDP)</td>
<td>0.15</td>
</tr>
<tr>
<td>Short run price elasticity of oil demand</td>
<td>0.10</td>
</tr>
<tr>
<td>Expenditure share on oil</td>
<td>0.04</td>
</tr>
</tbody>
</table>

The Short Run Changes:

<table>
<thead>
<tr>
<th></th>
<th>Predicted</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inv.</td>
<td>No Inv.</td>
</tr>
<tr>
<td>Real Interest Rates (%)</td>
<td>-1.2</td>
<td>-1.0</td>
</tr>
<tr>
<td>Crude Oil Prices (%)</td>
<td>98</td>
<td>0</td>
</tr>
<tr>
<td>Current Account (% of GDP)</td>
<td>2.80</td>
<td>6.20</td>
</tr>
</tbody>
</table>
Inventories & Speculation

- US and OECD recorded crude oil inventories have decreased since September 2006 (EIA)

 This is not a concern for three reasons:
 - Inventories respond slowly to financial crisis;
 - Observed inventories reflect two opposing forces: increased demand from EM and speculation;
 - Producers may be the most efficient inventory holders: inventories consist of the stock of proven in-the-ground oil reserves;

Speculation and Policy

- Futures (& futures’ taxation) have no effect on the equilibrium;
- Taxing inventories reduces the price increase in the short run only, but exacerbates the asset shortage in the long run.
Inventories & Speculation

- US and OECD recorded crude oil inventories have decreased since September 2006 (EIA)
- This is not a concern for three reasons:
 - Inventories respond slowly to financial crisis;
 - Observed inventories reflect two opposing forces: increased demand from EM and speculation;
 - Producers may be the most efficient inventory holders: inventories consist of the stock of proven in-the-ground oil reserves;

Speculation and Policy

- Futures (& futures' taxation) have no effect on the equilibrium;
- Taxing inventories reduces the price increase in the short run only, but exacerbates the asset shortage in the long run.
US and OECD recorded crude oil inventories have decreased since September 2006 (EIA)

This is not a concern for three reasons:
- Inventories respond slowly to financial crisis;
- Observed inventories reflect **two opposing forces**: increased demand from EM and speculation;
- Producers may be the most efficient inventory holders: inventories consist of the stock of proven in-the-ground oil reserves;

Speculation and Policy
- Futures (& futures’ taxation) have no effect on the equilibrium;
- Taxing inventories reduces the price increase in the short run only, but exacerbates the asset shortage in the long run.
Inventories & Speculation

- US and OECD recorded crude oil inventories have decreased since September 2006 (EIA)
 This is not a concern for three reasons:
 - Inventories respond slowly to financial crisis;
 - Observed inventories reflect two opposing forces: increased demand from EM and speculation;
 - Producers may be the most efficient inventory holders: inventories consist of the stock of proven in-the-ground oil reserves;

Speculation and Policy
- Futures (and futures’ taxation) have no effect on the equilibrium;
- Taxing inventories reduces the price increase in the short run only, but exacerbates the asset shortage in the long run.
US and OECD recorded crude oil inventories have decreased since September 2006 (EIA). This is not a concern for three reasons:

- Inventories respond slowly to financial crisis;
- Observed inventories reflect two opposing forces: increased demand from EM and speculation;
- Producers may be the most efficient inventory holders: inventories consist of the stock of proven in-the-ground oil reserves;

Speculation and Policy

- Futures (and futures’ taxation) have no effect on the equilibrium;
- Taxing inventories reduces the price increase in the short run only, but exacerbates the asset shortage in the long run.
US and OECD recorded crude oil inventories have decreased since September 2006 (EIA)

This is not a concern for three reasons:

- Inventories respond slowly to financial crisis;
- Observed inventories reflect two opposing forces: increased demand from EM and speculation;
- Producers may be the most efficient inventory holders: inventories consist of the stock of proven in-the-ground oil reserves;

Speculation and Policy

- Futures (& futures’ taxation) have no effect on the equilibrium;
- Taxing inventories reduces the price increase in the short run only, but exacerbates the asset shortage in the long run.
US and OECD recorded crude oil inventories have decreased since September 2006 (EIA)

This is not a concern for three reasons:

- Inventories respond slowly to financial crisis;
- Observed inventories reflect two opposing forces: increased demand from EM and speculation;
- Producers may be the most efficient inventory holders: inventories consist of the stock of proven in-the-ground oil reserves;

Speculation and Policy

- Futures (& futures’ taxation) have no effect on the equilibrium;
- Taxing inventories reduces the price increase in the short run only, but exacerbates the asset shortage in the long run.
The paper provides an asset view of the current crisis and related developments;

- The central feature is a chronic global shortage of financial assets;
- This shortage explains the sharp rise in oil prices and the limited global rebalancing following the subprime crisis;
- A more complete picture would include reversals, overshooting and firesales. The central message would remain the same: bad news for US financial markets is good news for oil and vice versa;
- The ultimate solution lies in the ability of EMs to produce sound stores of value.
The paper provides an asset view of the current crisis and related developments;

The central feature is a chronic global shortage of financial assets;

This shortage explains the sharp rise in oil prices and the limited global rebalancing following the subprime crisis;

A more complete picture would include reversals, overshooting and firesales. The central message would remain the same: bad news for US financial markets is good news for oil and vice versa;

The ultimate solution lies in the ability of EMs to produce sound stores of value.
Discussion

- The paper provides an asset view of the current crisis and related developments;
- The central feature is a chronic global shortage of financial assets;
- This shortage explains the sharp rise in oil prices and the limited global rebalancing following the subprime crisis;
- A more complete picture would include reversals, overshooting and firesales. The central message would remain the same: bad news for US financial markets is good news for oil and vice versa;
- The ultimate solution lies in the ability of EMs to produce sound stores of value.
The paper provides an asset view of the current crisis and related developments;

The central feature is a chronic global shortage of financial assets;

This shortage explains the sharp rise in oil prices and the limited global rebalancing following the subprime crisis;

A more complete picture would include reversals, overshooting and firesales. The central message would remain the same: bad news for US financial markets is good news for oil and vice versa;

The ultimate solution lies in the ability of EMs to produce sound stores of value.
The paper provides an asset view of the current crisis and related developments;

The central feature is a chronic global shortage of financial assets;

This shortage explains the sharp rise in oil prices and the limited global rebalancing following the subprime crisis;

A more complete picture would include reversals, overshooting and firesales. The central message would remain the same: bad news for US financial markets is good news for oil and vice versa;

The ultimate solution lies in the ability of EMs to produce sound stores of value.
Oil and Stocks

\[\Delta p_t = \alpha + \beta \Delta S_t + \epsilon_t \]

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>daily</td>
<td>weekly</td>
<td>monthly</td>
<td>quarterly</td>
<td>annual</td>
</tr>
<tr>
<td>SP500</td>
<td>-1.55</td>
<td>-1.85</td>
<td>-2.75</td>
<td>-3.03</td>
<td>-1.07</td>
</tr>
<tr>
<td></td>
<td>(6.12)</td>
<td>(4.57)</td>
<td>(3.43)</td>
<td>(3.48)</td>
<td>(1.07)</td>
</tr>
<tr>
<td>Constant</td>
<td>0.00</td>
<td>0.00</td>
<td>0.03</td>
<td>0.08</td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>(2.07)</td>
<td>(2.33)</td>
<td>(2.23)</td>
<td>(2.74)</td>
<td>(1.36)</td>
</tr>
</tbody>
</table>

First Stage regressions (dependent variable S&P 500)

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Financials</td>
<td>0.24</td>
<td>0.25</td>
<td>0.26</td>
<td>0.26</td>
<td>-0.21</td>
</tr>
<tr>
<td></td>
<td>(7.45)</td>
<td>(5.28)</td>
<td>(2.92)</td>
<td>(2.40)</td>
<td>(0.79)</td>
</tr>
<tr>
<td>gold</td>
<td>-0.09</td>
<td>-0.08</td>
<td>-0.16</td>
<td>-0.19</td>
<td>-0.50</td>
</tr>
<tr>
<td></td>
<td>(3.99)</td>
<td>(2.45)</td>
<td>(2.58)</td>
<td>(2.71)</td>
<td>(1.85)</td>
</tr>
<tr>
<td>Constant</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.289</td>
</tr>
<tr>
<td></td>
<td>(2.70)</td>
<td>(2.88)</td>
<td>(3.19)</td>
<td>(4.13)</td>
<td>(2.65)</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.04</td>
<td>0.05</td>
<td>0.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>6015</td>
<td>1279</td>
<td>293</td>
<td>291</td>
<td>282</td>
</tr>
</tbody>
</table>

Commodity Prices
Energy + biofuels

Financial “Whac-a-Mole”
Brookings 16 / 18
Commodity Prices
Metals

Caballero, Farhi & Gourinchas ()
Financial “Whac-a-Mole”
Brookings 17 / 18
Commodity Prices

Foodstuff

WHEAT
SOYBEAN
SUGAR
HOG
CATTLE
CPI

Financial “Whac-a-Mole”